Structure-Reactivity Relationship for Sulfur-Fluorine Compounds. Gas-Phase Structure of Fluoro Trifluoromethyl Sulfoxide, CF,SOF, and Trifluoro(trifluoromethyl)sulfurane, $CF₃SF₃¹$

Rolf Minkwitz,*,2a Walter Molsbeck,^{2a} Heinz Oberhammer,*,2b and Ilse Weiss^{2b}

Received July 30, 1991

The gas-phase structures of the two S(IV) compounds CF₃SOF and CF₃SF₃ have been determined by electron diffraction. The following geometric parameters $(r_a/m$ and $\angle_a/$ deg, uncertainty values 3σ) have been derived: CF₃SOF, S=O = 142.2 (5), S-F $S-F_a = 165.5$ (5), $S-C = 188.7$ (7), $\angle F_c-S-F_a = 86.1$ (10), $\angle C-S-F_a = 86.5$ (7), $\angle F_c-S-C = 98.4$ (32). Literature data suggest a quantitative structure-reactivity relationship for sulfur-fluorine compounds. According to this relationship sulfanes and sulfuranes with S-F bonds shorter than 159.5 \bullet 1.5 pm form adducts with Lewis acids MF₅ (M = As, Sb), whereas compounds with S-F bonds longer than this "critical value" form salts by exchanging fluoride ions with Lewis acids. The above results for CF₃SOF $(S-F = 159.1$ (4) pm) and CF_3SF_3 $(S-F_4 = 165.5$ (5) pm) confirm this relationship. The former compound, whose S-F bond is very close to the critical value, forms adducts with MF_5 , whereas the latter reacts to yield $CF_3SF_7^+MF_5^-$. $= 159.1$ (4), $S-C = 188.9$ (5), $\angle O-S-F = 103.9$ (11), $\angle O-S-C = 103.6$ (35), $\angle C-S-F = 93.7$ (26), CF_3SF_3 , $S-F_6 = 156.5$ (8),

Introduction

The chemical properties of a compound such as its stability and chemical reactivity are related to its geometric and electronic structure. In practice, however, very little is known about correlations between geometric structures and chemical reactivities. A quantitative structure-reactivity relationship appears to exist for sulfur-fluorine compounds. The data collected in Table I

- (1) Chemistry of Sulfur Halides. 50. Part 49: Minkwitz, R., Molsbeck, W. *Z. Naturforsch., B,* in press. (2) (a) University of Dortmund. (b) University of Tubingen. (3) Hagen, K.; Cras, V. R.; Hedberg, K. *J.* Mol. *Strucr.* **1978,** *44,* 187.
-
-
- (4) Chen, G. S. H.; Passmore, J. J. Chem. Soc., Dalton Trans. 1979, 1257.
(5) Kirchhoff, W. H.; Wilson, E. B. J. Am. Chem. Soc. 1962, 84, 334.
(6) Glemser, O.; Mews, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 883.
(7) Hargi
-
-
-
- (8) Oberhammer, H.; Boggs, J. E. *J. Mol. Struct.* **1979,** *56,* 107. (9) Bock, H.; Boggs, J. E.; Kleeman, G.; Lentz, D.; Oberhammer, H.; Peters, E. M.; Seppelt, K.; Simon, A.; Solouki, B. Angew. Chem. 1979, 91, 1008; Angew. Chemie, Int. Ed. Engl. 1979, 18, 944.
- (10) Des Marteau, D. D.; Eysel, H. H.; Oberhammer, H.; Gunther, H. *Inorg. Chem.* **1982,** *21,* 1607.
-
- (11) Minkwitz, R.; Molsbeck, W. *Z. Naturforsch. B.* in press. (12) Alan, K.; Shreeve, J. M.; Mack, H. G.; Oberhammer, H. *J.* Mol. *Srruct.* **1988,** *178,* 207.
- (13) Alan, K.; Shreeve, J. M. *Inorg. Chem.* **1988,** *27,* 1374.
- (14) Marsden, C. J. Private communication, 1988.
- **(15)** Klemann, G.; Seppelt, K. *Angew. Chem.* **1981,93,** 1096, *Angew. Che- mie, Inr. Ed. Engl.* **1981,** *20,* 1037.
-
-
- (16) Hedberg, L.; Hedberg, K. *J. Chem. Phys.* 1982, 86, 598.
(17) Seel, F.; Detmer, O. *Angew. Chem.* 1958, 70, 163.
(18) Minkwitz, R.; Lekies, R.; Lennhoff, D.; Sawatzki, J.; Kadel, J.; Oberhammer, H. *Inorg. Chem.* **1990, 29,** 2587.
- (19) Gerhard, V. Ph.D. Thesis, Universität Dortmund, 1991.
- (20) Marsden, C. J.; Oberhammer, H.; Losking, 0.; Willner, H. *J.* Mol. *Struct.* **1989, 193,** 233.
- (21) Seel, F.; Hartman, **V.;** Molnar, I.; Budenz, R.; Gombler, W. *Angew. Chem.* **1971,** *83,* 173; *Angew. Chemie, Int. Ed. Engl.* **1971,** *10,* 186.
- (22) Kimura, K.; Bauer, *S.* H. *J. Chem. Phys.* **1963, 39,** 3172. (23) Azeem, M.; Brownstein, M.; Gillespie, R. J. *Can. J. Chem.* **1969,** *47,* 4159.
- (24) Cook, R. L.; Kirchhoff, W. H. *J. Chem. Phys.* **1967,** *47,* 4521.
-
- (25) Hollemann, A. F.; Wiberg, E. *Lehrbuch der Anorganischen Chemie;* Walter de Gruyter Verlag: Berlin, New York, 1985. (26) Heilemann, W.; Mews, R.; Oberhammer, H. *J. Fluorine* Chem. **1988,** . **39,** 261.
-
- (27) Demitras, G. C.; MacDiarmid, **A.** G. *Inorg. Chem.* **1967,** *6,* 1903. (28) Downs, A. J.; McGrady, G. *S.;* Barnfield, E. A.; Rankin, D. W. H.; Robertson, H. E.; Boggs, J. E.; Dobbs, K. D. *Inorg. Chem.* **1989,** *28,*
- (29) Minkwitz, R.; **Lekies,** R.; Werner, **A.** *2. Anorg. Allg. Chem.* **1988,559.** 163. 3286.
-
-
- (30) Kramer, M.; Duncan, L. C. *Inorg. Chem.* **1971,** *10,* 647. (31) Downs, A. J.; Forster, A. M.; McGrady, G. S.; Taylor, B. J. *J.* Chem. *SOC., Dalton Trans.* **1991,** 8 1.
- (32) Oberhammer, H.; Kumar, R. C.; Knerr, G. D.; Shreeve, J. M. *Inorg. Chem.* **1981, 20,** 3871.

suggest that sulfur fluorides with S-F bonds longer than *ca.* 159.5 pm react with strong Lewis acids such as AsF_5 or SbF_5 . In most cases the cations formed by **F** abstraction are stabilized by the cases the cations formed by F⁻² abstraction are stabilized by the hexafluorometalates MF₆⁻ (M = As, Sb). In some cases, however, secondary reactions occur, such as the reaction of CF₃SSF ($r(S-F)$) = 161.1 (3) pm) w secondary reactions occur, such as the reaction of CF_3SSF ($r(S-F)$) = 161.1 (3) pm) with SbF₅:

$$
2CF3SSF + 2SbF5 $\xrightarrow{SO2}$ 2[CF₃SS⁺SbF₆⁻][*] \rightarrow
[S₄²⁺(SbF₆⁻)₂].SO₂ + C₂F₆
$$

The assumed intermediate, the **(trifluoromethy1)sulfonium** cation $CF₃SS⁺$ dimerizes to form an $S₄²⁺$ salt with simultaneous elimination of C_2F_6 . Fluorosulfanes or fluorosulfuranes which possess electron lone pairs do not react with AsF_5 or SbF_5 , if their S-F bonds are shorter than ca. 159.5 pm, but instead form Lewis acid-base adducts. In persulfuranes, where no electron lone pair is available for adduct formation, this critical value for S-F bond lengths is slightly lowered to *ca.* 158 pm. Examples, where both, structure and reactivity, are known, are the reactions of CH_3SF_5 with MF₅ ($M = As$, Sb) and of *trans*-CF₃SF₄Cl with AsF₅. The

latter reaction is assumed to proceed in the following way:
\n
$$
CF_3SF_4Cl + AsF_5 \rightarrow [CF_3SF_3Cl^+AsF_6^-]^{\dagger} \rightarrow
$$

\n $F_2SCl^+AsF_6^- + CF_4$

In the context of this structure-reactivity relationship the geometric structure, especially the $S-F$ bond length in $CF₃SOF$, is of interest. For this compound we have observed the formation of adducts with AsF_5 and SbF_5 . If the S-F bond is indeed shorter than 159.5 pm, CF₃SOF would be an additional confirmation of the above structure-reactivity relationship.

From known structural data for $SF_4^{22,34}$ and $(CF_3)_2SF_3^{32}$ it is very likely that the axial S-F bonds in CF_3SF_3 are much longer than 159.5 pm, and this is also reflected in the reactivity of this compound: $CF_3SF_2^+$ cations are readily formed with Lewis acids. An electron diffraction study of CF₃SF₃ has recently been reported by Downs et al.²⁸ but our results for this compound differ somewhat from those. These differences have no effect **on** the chemical reactivity discussed above but alter the conclusions concerning bonding properties of sulfuranes compared to those of phosphoranes. The two S(IV) compounds CF_3SOF and CF_3SF_3 are chemically related in so far as CF_3SF_3 reacts very readily with traces of water to form $CF₃SOF$.

Experimental Section

 $CF₃SF₃$ was synthesized by "low pressure-cold surface" fluorination according to Braun et al.³⁵ A 7.0-mmol (1.414-g) sample of CF_3SSCF_3

⁽³³⁾ Minkwitz, R.; Werner, A. J. *Fluorine Chem.* **1988, 39,** 141. (34) Tolles, W. M.; Gwinn, W. G. *J. Chem. Phys.* **1962,** *36,* 11 19.

Table I. S-F Bond Lengths of Sulfur-Fluorine Compounds and Their Reactivity with Lewis Acids

compd		$r(S-F)/pm$	rcf	products	ref
O_2SF_2	153.1(2)			O_2SF_2 ·AsF _s	
NSF.	155.2(3)			$NSF_{\mathbf{1}}·MF$, $(M = As, Sb)$	
OSF,	158.3(3)			$OSF_2 MF_5$ (M = As, Sb)	
$CH2=SF4$	$157.5(12)^{a}$	$159.5(12)^{b}$	8	$CH_2=SF_4$ AsF,	
$FN = SF_4$	$156.7(5)^{a}$	$157.7 (12)^c$	10 [°]	$FN=SF4·MF5$ (M = As, Sb)	10
CF ₃ SOF				$CF3SOF-MF3$ (M = As, Sb)	11
$CF3$ $FC4$ $CF4$	158.3(2)		12	$F_2SC1^+AsF_6^-$	13
CH_3SF_5	$159.3(4)^a$	$157.7(13)^{b}$	14	$CH_3SF_4^+MF_6^-$ (M = AS, Sb)	15
OSF ₄	$154.0(3)^{a}$	$159.7(3)^{b}$	16	$OSF_1^+MF_6^-(M = As, Sb)$	17
CF ₃ SSF	161.1(3)		18	$S_4^{2+}(SbF_6)^-SO_2$	19
FSSF	163.5(2)		20	$S_2F^*AsF_6$, $S_2F^*BF_4$	21
SF_{4}	$154.2(5)^{a}$	164.3(5) ^b	22	$SF_1^+MF_6^-$ (M = P, As, Sb)	23
				$SF_1 + BF_4$	23
NSF	164.3(2)		24	$NS^{+}MF_{6}^{-}$ (M = As, Sb)	25
$(CH_3)_2$ NSF,	$156.3(9)^a$	167.0 $(7)^b$	26	$(CH_3)_2$ NSF ₂ ⁺ MF ₆ ⁻ (M = As, Sb)	27
				(CH_3) , NSF, H BF ₄	27
CF_3SF_3	$159.6(11)^{d}$	167.9 $(4)^b$	28	$CF_1SF_2^+MF_6^-$ (M = P, As, Sb)	29, 30
				$CF_1SF_2 + BF_4$	30
CH ₃ SF,	$157.5(5)^a$	$168.9(1)^{b}$	28	CH_3SF_7 As F_6 , CH_3SF_7 BF ₄	31
$(CF_3)_2SF_2$		168.1 $(3)^b$	32	$(CF_3)_2$ SF ⁺ MF ₆ ⁻ (M = As, Sb)	33

 $a(S-F)_{\alpha\alpha}$. $b(S-F)_{\alpha\alpha}$. Mean $(S-F)_{\alpha\alpha}$.

Figure 1. CF₃SOF: Experimental (dots) and calculated (full line) molecular intensities and differences.

Figure 2. CF_3SF_3 : Experimental (dots) and calculated (full line) molecular intensities and differences.

was condensed at **77** K into a 100-mL stainless steel reactor. The fluorination was performed at **153** K for **6** h, and excess fluorine was pumped off at **77** K. The yield was **95%.** The purity was checked by I9F-NMR spectroscopy.

 $CF₃SOF$ was prepared by mild hydrolysis of $CF₃SF₃$ according to Ratcliffe and Shreeve.³⁶ A 15-mmol (2.37-g) amount of CF₃SF₃ was condensed into a **2-L** glass flask and **200** mbar of air was added. After **14** days at room temperature, the air was pumped off at **77** K. The sample was purified by fractional condensation at **183-188** K in order to remove the formed SiF_4 . The yield of spectroscopically pure CF_3SOF was ca. **50%.**

The samples were transported from Dortmund to Tübingen at liquid-nitrogen temperature. The electron diffraction intensities were recorded with a Balzers Gas Diffractograph" at two camera distances **(25**

Figure 3. CF₃SOF: Experimental radial distribution function and difference curve. An artificial damping factor of $exp(-20s^2)$ was used.

Figure 4. CF₃SF₃: Experimental radial distribution function and difference curve. An artificial damping factor of $exp(-20s^2)$ was used. Nonbonded distances between CF, fluorines and SF, fluorines are not labeled.

and **50** cm) and with an acceleration voltage of ca. **60 kV.** The electron wavelength was determined from **ZnO** diffraction patterns, which in turn were calibrated by $CO₂$ gas diffraction. The sample reservoirs were kept

⁽³⁵⁾ Braun, R. **W.;** Cowley, **A.** H.; Cushner, M. C.; **Lagow,** R. J. *Inorg. Chem. 1918, 17,* **1679.**

⁽³⁶⁾ Ratcliffe, **C. T.;** Shreeve, J. M. *J. Am. Chem. SOC.* **1968,** *90,* **5403. (37)** Oberhammer, **H.** *Molecular Structure by Dijfracrion Methods;* **The** Chemical Society: **London, 1976; Vol. 4, p 24.**

Table **11.** Results of the Electron Diffraction Analysis for CF,SOFa

Geometric Parameters									
$S=0$	142.2 (5) (p_1)	$\angle C-S-F$	93.7 (26) (p_7)						
$S-F$	159.1 (4) (p_2)	$\angle F-C-F$	109.9 (3) (p_8)						
$S-C$	188.9 (5) (p_1)	$tilt(CF_i)$	3.9 (26) (p_9)						
$C-F$	132.2 (3) (p_4)	δ (FICSF)	40 (7) (p_{10})						
\angle O=S-F	103.9 (11) (p_5)	δ (F1CSO) ^b	$-60(7)$						
\angle O \equiv S \sim C	103.6 (35) (p_6)								
	Interatomic Distances and Vibrational Amplitudes								

 $^a r_a$ distances in pm and \angle_a angles in deg. Numbers in parentheses are 3σ values and refer to the last digit. For atom numbering, see Figure 3. ^b Dependent parameter. ^c Not refined.

at -55 °C (CF₃SOF) and -73 °C (CF₃SF₃), and the inlet system and nozzle were maintained at room temperature. The purity of the samples was checked by IR gas spectra before and after the experiment. Two plates for each compound and camera distance were analyzed with the usual procedures.³⁸ Numerical values of the scattering intensities in the s-ranges 0.02-0.18 pm⁻¹ and 0.08-0.35 pm⁻¹ in steps of $\Delta s = 0.002$ pm⁻¹ are available as supplementary material, and averaged molecular intensities are shown in Figures 1 and 2.

Structure Analysis

Preliminary structural models for both compounds were derived from the radial distribution curves (Figures 3 and 4), which were then refined by least-squares analyses. For this purpose, the molecular intensities were multiplied with diagonal weight matrices³⁸ and known scattering amplitudes and phases were applied.³⁹ Comparison of radial distribution curves calculated for various structural models with the experimental curve reveals that CF_3SF_3 possesses C_s symmetry with the CF_3 group in the equatorial position and eclipsing the equatorial S-F bond. The CF_3 group in $CF₃SOF$ staggers the S= O and S-F bonds. For both compounds the CF_3 groups were constrained to C_{3v} symmetry with a possible tilt angle between the **C,** axis and the S-C bond direction. In the analysis for CF_3SF_3 the refined value for the tilt angle is smaller than the respective standard deviation and it was set to zero in further refinements. The fit of the experimental intensities improves slightly if the $CF₃$ group is allowed to deviate from the exact eclipsed position. This torsional angle **is** an effective value due to a large amplitude torsional motion and indicates a low barrier to internal rotation around the S-C bond. Vibrational amplitudes for closely spaced distances were collected in groups, and those for distances which make small contributions to the molecular intensities were set to fixed values (see Tables **I1** and III). With these assumptions ten (CF_3SOF) and nine (CF_3SF_3) independent geometric parameters were refined simultaneously together with nine (CF₃SOF) and seven (CF₃SF₃) vibrational amplitudes. Several correlations between these parameters had values larger than $[0.7]$:

Numbering of the geometric parameters p_i and vibrational amplitudes l_k and the final results are given in Tables II and III.

p,/ l,-0.76. pel I,. *-0.82*

Table III. Results of the Electron Diffraction Analysis for $CF_3SF_3^a$

		Geometric Parameters			
$(S-F)_{mean}$		162.5 (3) (p_1)		\angle F _r -S-F _r	86.1 (10) (p_5)
Δ SF =			9.0 (10) (p_2)	$\angle C-S-F.$	86.5 (7) (p_6)
$(S-F_a) - (S-F_e)$				\angle F ₃ -S-F ₃ ^c	169.4(13)
$S-F^c$		156.5(8)		\angle F.-S-C	98.4 (32) (p_7)
$S-F_{s}$		165.5(5)		$\angle F-C-F$	109.7 (8) (p_8)
S-C		188.7 (7) (p_3)		δ (F1CSF) ^d	21 (6) (p_9)
C-F		131.9 (3) (p_4)			
		Interatomic Distances and Vibrational Amplitudes			
	dist	amplitude		dist	amplitude
$C-F$	132	4.1 (3) (l_1)	F.-C	250	9.0 ^e
$S-F_{\lambda}$	157		S-F	263	7.3 (5) (l_5)
$S-F_a$	166	$5.2(6)(l_2)$	F·F	$226 - 269$	23.0 (4) (l_6)
$S-C$	189	4.7 (8) (l_3)	F F'	$324 - 328$	24.0 (7) (l_7)
$F\cdot F$	215		$F_a \cdot F_a'$	329	8.0 ^e
$F - F$	220	6.6 (6) (l_4)	F·F.	$342 - 369$	15.0^e
F.•C	243	7.0e			

 $^a r_a$ distances in pm and \angle_a angles in deg. Figures in parentheses are 3σ values and refer to the last digit. For atom numbering, see Figure b (S-F)_{mean} = $^{1}/_{3}$ [(S-F_e) + 2(S-F_a)]. ^cDependent parameter. ^dEffective torsional angle of CF₃ group, for $\tau = 0$ the C-Fl bond eclipses the S-F_e bond. ϵ Not refined. f_{F_x} is F_a or F_e.

Discussion

The S-F bond length of CF,SOF, which is of primary interest in this study, is not affected by high correlations and is thus well determined. It is only slightly shorter (159.1 (4) pm) than the "critical" value for chemical reactivity discussed in the Introduction **(a.** 159.5 pm for sulfanes and sulfuranes). The experimental value conforms with the observation that this compound does not react by fluoride abstraction but forms adducts with Lewis acids. Within the combined error limits the S-F and *S-C* bond lengths are equal to those in F₂SO (S-F = 158.3 (3) pm)⁷ and (CF₃)₂SO $(S-C = 188.5 \text{ (4) pm}$.³² The bond angles around sulfur $(\angle O=$ S-F and \angle O=S-C), which are not well determined in this study because of high correlations between refined parameters, correspond within experimental uncertainties to those in F_2SO and $(CF_3)_2SO.$

Some geometric parameters of CF_3SF_3 which were derived in this study do not agree with those reported by Downs et a1.% Their values for the S-F and S-C bond lengths are larger by 2-3 pm. This earlier study, however, has recently been revised (personal communication from D. W. H. Rankin), yielding parameters in agreement with ours. The mean S-F bond lengths in $R-SF_3$ compounds increase steadily with decreasing electronegativity of the equatorial substituent R, from $F-SF_3$ (160.9 (5) pm from electron diffraction,²² 161.2 (3) pm from microwave spectroscopy³⁴), to CF_3SF_3 (162.5 (3) pm), and to CH_3SF_3 (165.1 (2) pm²⁸). This trend is in accordance with ab initio calculations (HF/4- 21S*): $(S-F)_{mean} = 160.1$ pm in F-SF₃⁸, 162.0 pm in CF₃SF₃²⁸ and 164.2 pm in $CH_3SF_3^{28}$ The experimental $(S-F)_{mean}$ bond lengths of Me₂N-SF₃ (163.4 (4) pm)²⁶ and FS-SF₃ (163.8 (5) $pm)$ ⁴⁰ are also intermediate between the two extremes $F-SF_3$ and $CH₃SF₃$. This effect of equatorial substituents is very similar to that in **R-PF,** compounds, indicating similar bonding properties in sulfuranes and phosphoranes. On the other hand, the CF_3 substituted sulfuranes CF_3SF_3 and $(CF_3)_2SF_2$ differ markedly from the analogous phosphoranes CF_3PF_4 and $(CF_3)_2PF_3$ with respect to their conformational properties. CF₃ groups in both sulfuranes occupy equatorial positions, and there is no experimental evidence for a conformer with axial CF, groups. Ab initio calculations for $CF₃SF₃²⁸$ predict the axial conformer to be higher in energy by 64.0 kJ mol⁻¹ relative to the equatorial form. An electron diffraction study of CF_3PF_4 , however, results in a mixture of equatorial and axial conformers in a ratio of 60:40,⁴¹ in perfect agreement with a recent matrix isolation FTIR study.⁴² The only

⁽³⁸⁾ Oberhammer, H.; Gombler, W.; Willner, H. J. Mol. *Sfrucf.* **1981, 70,** 273.

⁽³⁹⁾ Haase, J. *Z. Naturforsch., A* **1970,** *25,* 936.

⁽⁴⁰⁾ v. Carlowitz, M.; Oberhammer, H., Willner, H.; **Boggs,** J. **E.** *J. Mol. Slrucf.* **1983,** *100,* 161.

⁽⁴¹⁾ Oberhammer, H.; Grobe, J.; LeVan, D. *Inorg. Chem.* **1982,** *21,* 275.

Lösking, O.; Willner, H.; Oberhammer, H.; Grobe, J.; Le Van, D. *Inorg. Chem.*, in press.

conformer observed in the electron diffraction study for $(CF_3)_2PF_3$ has both CF_3 groups in axial positions.⁴¹

Conclusion

Available data on geometric structures and chemical reactivities of sulfur-fluorine compounds suggest a quantitative structurereactivity relationship for this class of compounds. *So* far, however, the number of examples is rather limited. The results of the present structure investigation of CF_3SOF and CF_3SF_3 are in accordance with this relationship. Additional studies on the chemical reactivity of sulfur-fluorine compounds for which gas-phase structures are known or, vice versa, structural studies of compounds whose chemical properties are known are required to confirm or modify the above relationship. In this context the investigation of the chemical reactivity of $(CF_3)_2SOF_2(S-F_4 =$

164.1 (4) pm^{43}) is planned in the near future.

Acknowledgment. R.M. and W.M. acknowledge support by the Minister für Wissenschaft und Forschung, Nordrhein-Westfalen and the Fonde der Chemischen Industrie. **H.O.** and I.W. are grateful for financial support by the Deutsche Forschungsgemeischaft .

Supplementary Material Available: Tables listing numerical values for the total intensities of CF_3SOF and CF_3SF_3 and full correlation matrices for both compounds (6 pages). Ordering information is given on any current masthead page.

(43) Oberhammer, H.; Shreeve, J. M.; Gard, G. **L.** *Inorg. Chem.* **1984,** *23,* **2820.**

> Contribution from the Department of Chemistry, **Cornell** University, Ithaca, New York **14853**

Synthesis, Structure, and Properties of Ba₆Co₂₅S₂₇: A Perovskite-like Superstructure of Co_8S_6 and Ba₆S Clusters

G. Jeffrey Snyder, Michael E. Badding, and F. J. DiSalvo*

Received August 15, 1991

We have prepared single crystals of a new ternary barium cobalt sulfide, $Ba_6Co_2S_2$, by cooling a melt containing BaS, CoS, and Co from 975 °C. The structure, determined by single-crystal X-ray diffraction, is cubic (Pm 1, and $R = 2.6\%, R_w = 2.4\%$. The structure contains an octahedrally coordinated cobalt atom, nearly cubic clusters of eight cobalt atoms, and an unusual arrangement of barium atoms. The electric resistivity and magnetic susceptibility measurements show that $Ba_6Co_2S_{27}$ is a poor metal with a resistance minimum at 8 K and is Pauli paramagnetic with a small Curie contribution indicating that either the Co₈ cluster or the octahedrally coordinated cobalt atom has a magnetic moment.

Introduction

In a previous report,¹ we have suggested that the unusual features of the high-temperature copper oxide superconductors could be duplicated in solid-state compounds with anions other than oxygen, in particular nitrogen and sulfur. In order to test this hypothesis, we are investigating the synthesis, structure, and properties of new ternary nitrides and sulfides. Herein, we report our first new ternary sulfide, $Ba_6Co_{25}S_{27}$. We also mention the synthesis of the isostructural compound $Ba₆Ni₂₅S₂₇$.

A first-row transition metal to the left of copper may have 3d orbitals with energies similar to those of the sulfur 3p orbitals, which would result in extensive mixing of the states at the Fermi level. Large electropositive cations, such as the heavier alkaline earth metals, may help "enforce" the perovskite-related structure of the copper oxide superconductors, as well as increase the oxidizing power of the oxygen.' We have chosen to explore the barium cobalt sulfide phase diagram, since these three elements satisfy the above criteria. Since many new barium iron sulfides have been discovered in the last 20 years,² there promise to be several new barium cobalt sulfides as well.

Only two barium cobalt sulfides have been reported in the literature. Ba₂CoS₃ is isostructural³ with Ba₂FeS₃, while BaCoS₂ has been reported⁴ to be isostructural with $BaNiS₂$, the only reported barium nickel sulfide. The former compounds along with all other known barium iron sulfides contain $FeS₄$ tetrahedra sharing edges and/or corners. With the exception of a highpressure polymorph⁵ of Ba₂FeS₃, and BaNiS₂, in which nickel is

pentacoordinated to sulfur in a nearly square pyramidal environment, the transition metal is always tetrahedrally coordinated to sulfur atoms. Furthermore, these compounds do not contain any metal-metal bonding, except for a few barium iron sulfides which contain isolated iron pairs.

The title compound, $Ba_6Co_{25}S_{27}$, is isostructural with the mineral djerfisherite,⁶ which is similar to $Co₉S₈$, the mineral pentlandite,' **both** of the latter containing cubic metal clusters and an octahedrally coordinated cobalt atom.

Experimental Section

Sample Preparation. $Ba_6Co_{25}S_{27}$ was first discovered by X-ray powder diffraction of the products produced in high-temperature reactions **(900** "C) of barium sulfide, cobalt sulfide, and cobalt powder in graphite containers which were sealed in evacuated quartz tubes. Semiquantitative electron microprobe analysis of the crystalline product indicated the presence of a new phase with a Ba:Co:S molar ratio of approximately **1:4:5.** The new phase, in fact, does not form from reactants heated at this molar ratio; however, it readily forms in mixtures containing less than **50** atom % sulfur. The crystal used for the structure determination was crystallized from the melt (heated to 975 °C and then cooled to 850 °C at 2 °C/h in a graphite boat and sealed in an evacuated quartz tube to prevent reaction with atmospheric oxygen) containing a Ba:Co:S molar ratio of 1:4:4. Singe-phase polycrystalline Ba₆Co₂₅S₂₇ can be made by reacting a pressed pellet **(40000** psi) containing a BaS:CoS:Co molar ratio of reactants of **6:21:4.** The reaction was carried out in an alumina crucible sealed in an evacuated **(10** mTorr) quartz tube and heated to 850 °C for 2 days. BaS was purchased from Aesar (99.9%), and CoS was synthesized from the elements (99.8+% Co, S: 99.999% S). Ba₆- $Co_{25}S_{27}$ forms gold metallic crystals which melt congruently at 950 $^{\circ}$ C, contain no ferromagnetic impurity, and are largely insensitive to the atmosphere.

 $Ba_6Ni_{25}S_{27}$ has been detected by powder X-ray diffraction in multiphase samples. Reactions containing stoichiometric amounts of Bas,

⁽¹⁾ Disalvo, **F.** J. *Chemistry of High-Temperature Superconductors;* ACS Symposium Series **351;** American Chemical Society: Washington, DC, **1987;** Chapter **5,** p **49.**

⁽²⁾ Perng, T. P.; Kimizuka, N.; Steinfink, H. *J.* Solid *Srare Chem.* **1981,** *40,* **92.**

⁽³⁾ Hong, H. Y.; Steinfink, H. J. Solid. State Chem. 1972, 5, 93.
(4) Grey, I. E.; Steinfink, H. J. Am. Chem. Soc. 1970, 92, 5093. Refined
structure and properties of BaCoS₂ are the subject of a future publi-
cation.

⁽⁵⁾ Jenks, J. M.; Hoggins, J. T.; Rendon-DiazMiron, L. E.; Cohen, **S.;** Steinfink, H. *Inorg. Chem.* **1978,** *17,* **1773.**

⁽⁶⁾ Czamanske, **G. K.;** Erd, R. C. *Am. Mineral.* **1979,** *64,* **776.**

⁽⁷⁾ Rajamani, **V.;** Prewitt, C. T. *Can. Mineral.* **1975,** *13,* **75.**